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quency if co7v£>l. If cor is not much greater than one, 
then one expects a variation of (Tir/ai0 with wavelength. 
Interband effects also will produce a variation of air/ai° 
with wavelength. For Ag over the range measured, 
COT^>1, while for Al one expects cor effects to start pro­
ducing a variation in <j\r/<J*p near the long-wavelength 
end of the measured region. 

The only previous experimental measurements to 
compare the measurements with are those of Majorana. 
Majorana used a tungsten light source and a Na 
photocathode. This combination has a peak sensitivity 
centered around 4500 A. Table I shows the Majorana 
values x> which are in reasonable agreement with our 
measurements in the vicinity of 4500 A. 

VI. CONCLUSIONS 

In this paper the first detailed study of the P R F E in 
aluminum and silver has been presented. I t has been 

I. INTRODUCTION 

TH E theory of the high-temperature susceptibility 
of the Heisenberg model ferromagnets has been 

advanced to a high degree of approximation through the 
extensive development of the exact power-series ex­
pansion method of Kramers and Opechowski1 by 
Rushbrooke and Wood2 (their paper shall henceforth be 

* This research was independently supported by the RCA 
Laboratories and the Raytheon Research Division. 

1 W. Opechowski, Physica 4, 181 (1937); 6, 1112 (1938). 
2 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958); 

denoted by R-W in the text. 

found possible to measure the effect with an accuracy 
of a few percent. Arguments have been presented indi­
cating, at least for Al, that the property measured is 
characteristic of the bulk. The determination of the 
real and imaginary parts of ai for Al has not been pos­
sible because the optical constants are not known with 
sufficient accuracy. For Ag the results are in reasonable 
agreement with the intraband theory. 
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denoted by R-W). With this technique the suscepti­
bility is expressed as a Taylor series in ascending powers 
of the reciprocal temperature. The coefficients of the 
series are then evaluated using a systematic and power­
ful diagrammatic analysis. All coefficients through the 
sixth-power term have been computed in R-W for 
general spin and arbitrary lattices. These six co­
efficients have been further generalized by Morgan and 
Rushbrooke3 to include the concentration dependence 
in ferromagnets containing random admixtures of non­
magnetic elements. 

3 D. J. Morgan and G. S. Rushbrooke, Mol. Phys. 4, 291 (1961). 

P H Y S I C A L R E V I E W V O L U M E 1 3 5 , N U M B E R 5A 31 A U G U S T 1 9 6 4 

High-Temperature Susceptibility of Heisenberg Ferromagnets Having 
First- and Second-Neighbor Interactions* 

PETER J. WOJTOWICZ 

RCA Laboratories-, Princeton, New Jersey 

AND 

R. I. JOSEPH 

Raytheon Research Division, Waltham, Massachusetts 
(Received 5 March 1964) 

Exact power-series expansion of the high-temperature magnetic susceptibility of the nearest-neighbor 
Heisenberg ferromagnets have been provided by Rushbrooke and Wood. This paper describes the derivation 
of high-temperature susceptibility series for Heisenberg ferromagnets having both first- and second-neighbor 
exchange. The calculation is accomplished by extending the general diagrammatic technique developed by 
Rushbrooke and Wood to include the second-neighbor interaction. All mixed coefficients for terms through 
the fourth power of the inverse temperature have been computed for arbitrary spin and general lattice struc­
ture. The series expansions have been applied to the susceptibility of gadolinium in order to determine the 
quality of information which can be obtained from experimental data. It is found that the susceptibility is 
not quite sensitive enough to be able to specify the values of both the first- and second-neighbor exchange 
constants. It is shown, however, that the theory is capable of providing one definite relationship between 
the values of the two constants. The determination of unique values for the constants then requires the 
analysis of additional experimental data. The value of the Curie constant is uniquely specified. 
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At this stage of development the applicability of the 
susceptibility series is still somewhat limited, however. 
The principal restricting feature of the current theory is 
the assumption that exchange interactions exist only 
between nearest-neighboring pairs of spins. In a wide 
variety of materials it is quite likely that interactions 
between second- and higher-order neighbor pairs will 
have magnitudes which are too large to be neglected. 
Saenz4 has included arbitrarily distant pair exchange in­
teractions in the series expansion method but has only 
applied these considerations explicitly to the problem 
of magnetic scattering of neutrons.5 In the present 
article we attempt to increase the utility of the sus­
ceptibility expansions by extending the results in R-W 
to include the effects of second-nearest-neighbor 
interactions. 

Section I I contains the formal statistical mechanical 
derivation of the susceptibility expansions based on a 
Heisenberg Hamiltonian containing both first- and 
second-neighbor interactions. 

Section I I I describes the calculation of the mixed 
terms using an extension of the diagram method de­
scribed in R-W. All mixed coefficients through the 
fourth-power term in the inverse temperature have been 
obtained for general spin and arbitrary lattices. In Sec. 
IV we consider the application of the enlarged sus­
ceptibility expressions to the determination of the first-
and second-neighbor exchange constants of ferromag­
netic gadolinium metal. 

II. FORMAL STATISTICAL MECHANICS 

The derivation of the susceptibility series follows very 
closely that given in R-W. In this article we shall there­
fore concentrate mainly on those new points brought 
about by the addition of second-neighbor interactions. 
The physical system of interest consists of a lattice of N 
sites containing atoms of spin S and gyromagnetic 
ratio g. Each atom will have z nearest-neighbor atoms 
and y second-neighbor atoms. The Hamiltonian of this 
system in the presence of an external magnetic field Hz 

is assumed to be 

oe= - 2 / i P - 2 / 2 R - g M f f , Q , 

R—Efcz S/c*Sj, 

(1) 

where Ji and J2 are the magnitudes of the first- and 
second-neighbor exchange interactions, respectively, 
and where /* is the Bohr magneton. P and R are the sum 
of Heisenberg exchange operators for all first- and 

4 A. W. Saenz, Phys. Rev. 119, 1542 (1960). 
5 Saenz has, however, provided certain quantities (his &, nr) 

from which the susceptibility could be computed for arbitrary 
interactions through terms in the third power of the inverse tem­
perature. The remaining operation required is the summation over 
the interaction constants within the £j,nr over the lattice sites; 
this is equivalent to the diagram counting of R-W or this paper. 

second-neighbor pairs, respectively, while —gnHzQ is 
the Zeeman energy operator for the entire lattice. The 
operator Q commutes with both P and R, but P does not 
commute with R. Adopting a more compact notation, 
the partition function of the system represented by 
Eq. (1) may be written as 

Z= (2^+ l )^<exp[2 /5 / 1 (P+ T R+aQ)]} , 

y = J*/Ji, a=gvH,/2Jh P=l/kT, 
(2) 

where (X) stands for the normalized trace of the 
(25+1) ^-dimensional direct product matrix representa­
tion of the operator X; k is the Boltzmann constant, and 
T the thermodynamic temperature. The partition func­
tion is now expanded as a power series in @ in terms of 
the moments \xn: 

(20/i)* 
Z = ( 2 S + 1 ) * E M», 

M„=<(P+7R+aQ». 

(3) 

The free energy, equal to —-fi~l InZ, may likewise be 
expanded as a power series in ft: 

(2pJi)r 

F=~p-1ln(2S+l)N~-p~1 D X, 
r=i r! 

(4) 

The cumulants X,. may in general be computed from 
the moments by the use of well-known techniques.6 In 
the present context, however, it has been demonstrated 
in R-W that the cumulants and moments obey a par­
ticularly simple relationship: 

Xr==rj\r/zr, (5) 

where the symbol T^f means "that part of / which is 
proportional to N" 

The zero-field susceptibility is obtained from the free 
energy by differentiation: 

X = -
d2F 

dH2 
H=Q \ 2 7 i) 

2 Q2p\ 

da2L=,o 
(6) 

This equation shows that only the terms in a2 are re­
quired from the free energy. Since Q and P + 7 R com­
mute, a binomial expansion of the cumulants or mo­
ments is valid 

r!/y< 

x,= L 
> t \ ( r - 1 ) \ 

-IV<(P+7R)'- (Q'>- (7) 

Retaining only the a2 terms, substitution into Eqs. (4) 
and (6) yields the susceptibility 

(2ft / i)^2 

x - ^ V E —rv<(P+7R)-2Q2>. (8) 
r=2 0 - 2 ) 1 

6 R. W. Zwanzig, J. Chem. Phys. 22, 1420 (1954). 
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The traces are now expanded in the parameter 7, but 
because P and R do not commute the simple binomial 
expression does not apply, Instead, it is necessary to 
write 

(P+7R)^2= E 7* £ P>-2-*R*, (9) 
q=0 Perm. 

where £p e rm. denotes the sum over all permutations in 
the order of appearance of the operators P and R; as an 
example, for P2R, this sum includes P2R, PRP, and 
RP2. If the above is now substituted into Eq. (8) and 
the sums are rearranged so that they are symmetrical, 
the susceptibility can then be written as a double ex­
pansion in powers of f3Ji and PJ2: 

C=Ng*n*S(S+l)/3k, 

where C is the Curie constant, and where the prime on 
the summations excludes the term m = n = 0. The first 
term of Eq. (11) is Curie's law for noninteracting spins, 
while succeeding terms represent increasing orders of the 
statistical mechanical perturbation of the first- and 
second-neighbor exchange on the free ion paramag­
netism. The reciprocal susceptibility may also be ex­
pressed as a double expansion 

x-»=(r/0[i+ Z' »n»0s/i)»(̂ /*)"]. (12) 
m,n=0 

The coefficients here may be computed from those of 
Eq. (11) by the use of the formula, 

n m 
hm=— L ] £ ' 0 r « & n - r , m - g . ( 1 3 ) 

r=0 q=0 

Equations (11) and (12) contain three distinctly dif­
ferent kinds of contributions. The first group of terms 
are those for which m = 0; only the first-neighbor in­
teraction appears. The coefficients, 

3 X 2 -
flno=— • -IV(P»Q*) (14) 

n\NS(S+l) 

have already been derived by Rushbrooke and Wood. 
The first six bn0 are in fact tabulated in R-W as func­
tions of S, z, and other lattice parameters such as the 
pn(z) (in R-W these are referred to simply as pn). The 
pn(z) further describe the interaction structure, and 
are defined such that zNpn(z)/2(n-\-2) gives the number 
of n-\~2 sided polygons, which can be placed on the 
lattice so that the sides form only nearest-neighboring 
sites.7 

The next class of terms are those for which n = 0; 
only the second-neighbor interaction appears. The 
coefficients, 

3X2 m 

flom= IV<R»Q2> (15) 
m\NS(S+l) 

aom(y) = amo(z->y), ( . 
bom(y) = bm0(z - > y). 

To obtain the numerical values of the b0m(y) for a par­
ticular lattice one merely has to take the functions, 
bmo(z) of R-W and substitute the numerical values of the 
lattice parameters y, pn(y), etc., in place of the cor­
responding s, pn(z), etc. Values of the pn(z) for a num­
ber of lattices are tabulated in R-W while selected 
values of the pn(z) and appropriate pn(y) are presented 
in Table I below. 

In the final category are those terms for which neither 
m nor n are zero; both first- and second-neighbor inter­
actions are present. These new terms are not simply re­
lated to those already considered and must be computed 
at length using the diagrammatic technique developed in 
R-W. The total number that requires detailed calcula­
tion, however, is reduced somewhat by a symmetry 
relation analogous to Eq. (16). Examination of Eq. 
(11) shows that anm and amn differ only be the inter-

7 The notation, pn (z) is not meant to imply that pn (z) is to be 
considered a function of z; the pn(z) are only functions of the 
lattice type under study. The contents of the parenthesis are meant 
rather to denote the kinds of "bonds" which make up the polygons 
within the lattice. Thus, the pn(z) are symbols which describe 
polygons composed of z type or nearest-neighbor "bonds" only, 
while the pn(y) to be introduced later describe polygons composed 
of y type or second-neighbor "bonds" only, etc. 

x=&v E £ 
(2/3/1)"(2/3/2)» 

m=o n=o (m-\-n)\ 

x E riV<P*R™Q2>. (io) 
Perm. 

As in R-W, the first term of this series (m~n~0) is 
TN(Q*) = NS(S+i)/3. Factoring out this term, we ob­
tain the susceptibility in the following final form: 

X=(C/r)[l+ E ' anw05/i)»05/2)«], 
m,n~0 

a n m = = _ _ . _ £ iv<P"R*Q*>, (11) 
(tl+tn)\NS(S+l) Term. 

are new but may be trivially obtained from the ano 
of R-W. The sole difference between Eqs. (15) and (14) 
is the appearance of the operator R in place of P. But 
the operators R and P are entirely similar except that 
while P pertains to interactions among first-neighbor 
pairs, R describes the interactions between second-neigh­
bor pairs. Therefore, the traces (R™Q2) will be the same 
as the traces (PmQ2) except that instead of being func­
tions of the first-neighbor lattice parameters z,pn(z), 
etc., they will be functions of the second-neighbor 
lattice parameters y, pn(y), etc. The pn(y) are defined 
such that yNpn(y)/2(n+2) gives the number of n-\-2 
sided polygons which can be placed on the lattice so 
that the sides join only second-nearest-neighbor sites. 
Thus, we mav write 
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change of P and R. Thus, once the traces are taken, 
anm and amn must, as in the case of Eq. (16), be related 
through the interchange of z and y: 

amn(z,y) ~ anm{z -*y,y~>z), 

bmn(z,y) = bnm(z -* y, y —» s). 
(17) 

That is, once the function bnm(z,y) is computed, bmn 

may be obtained from it by the substitution of z for y, 
and y for z. This procedure will be illustrated in the 
next section where the details of the calculation of 
mixed coefficients are described. 

(o) 

(c) 

(b) 

U> 

(e) 

I—^ l /--̂  
(fl) (h) 

FIG. 1. Selection of typical diagrams encountered in the 
evaluation of the traces, <P4Q2) and SPerm. <P2R2Q2>-

III. EVALUATION OF THE COEFFICIENTS 

The labor of calculating the mixed coefficients is 
greatly reduced by the use of a diagram technique de­
veloped by Rushbrooke and Wood. In R-W, the classi­
fication, enumeration, and evaluation of the many dif­
ferent contributions contained in a given (PnQ2) were 
facilitated by the representation of these contributions 
in terms of diagrams (localized graphs) on the lattice. 
The pertinent diagrams consisted of n lines and two 
crosses. A line connecting nearest-neighboring sites i 
and j represents the pair exchange operator S^Sy, 
while a cross on site k represents the spin operator Skz> 
Several of the diagrams encountered in (P4Q2), for 
example, are shown in Fig. 1, (a)-(d). 

The diagrammatic analysis of the traces (PnRmQ2) re­
quires the introduction of another device with which to 
construct the necessary diagrams. A dashed line con­
necting next-nearest-neighboring sites k and I will be 
taken to represent the second-neighbor pair-exchange 
operator SyfSz. The relevant diagrams then consist of n 
full lines, m dashed lines, and two crosses. Several of the 
diagrams derived from X̂ Perm. (P2R2Q2), for example 
are shown in Fig. 1, (e)-(h). 

The calculation of the coefficients according to the 

TABLE I. Numerical values of the lattice parameters 
for several crystal structures. 

Structure 

z 
y 
pi(*) 
pi(y) 
P2(Z) 

pi(y) 
pi(y; 2s) 
pi(z;yy) 
pi(y;yz) 
pi(z;zy) 
p2(y; zzz) 
p2(z; yyy) 
p2(y;zyz) 
P%iy\zzy) 

Face-
centered 

cubic 

12 
6 
4 
0 

22 
4 
4 
0 
0 
4 

24 
0 

16 
8 

Body-
centered 

cubic 

8 
6 
0 
0 

12 
4 
4 
0 
0 
6 
0 
0 

16 
16 

Simple 
cubic 

6 
12 
0 
4 
4 

22 
2 
0 
0 
8 
0 
0 

16 
20 

Hexagonal 
close-

packed 

12 
6 
4 
0 

22 
4 
4 
0 
0 
4 

24 
0 

14 
10 

diagrammatic method involves three separate phases: 
(a) the finding and cataloging of all the diagrams or 
graphs which can be constructed from n full lines, m 
dashed lines, and two crosses, (b) counting the number 
of times that a diagram can occur on a lattice of N sites, 
and (c) evaluation of the traces of the products of spin 
variables which correspond to the diagrams. A signifi­
cant amount of computation can further be avoided if 
in addition, at stage (a) one eliminates all those dia­
grams which will obviously lead to vanishing results. As 
demonstrated in R-W, the following kinds of diagrams 
may be completely ignored: all diagrams containing 
two crosses on the same lattice point (double crosses), 
all diagrams containing a point with only a single line 
attached, and all diagrams containing a point with 
only a single isolated cross attached. Diagrams with 
double crosses are ignored because an exact cancella­
tion occurs (in order A7) between graphs having isolated 
double crosses and graphs in which the double cross 
falls on a site with lines attached. The remaining cate­
gories provide no contribution since these diagrams rep­
resent terms having only a single spin operator associ­
ated with a given site; traces of single spin matrixes of 
course vanish. 

In spite of being able to ignore the obviously vanish­
ing diagrams, the number which still have to be con­
sidered is not insignificant and increases rapidly with m 
and n. While certain kinds of graphs which appeared in 
R-W cannot occur here, there is a far larger number of 
additional graphs which do enter into the mixed co­
efficients. For example, diagrams with a high multi­
plicity of lines such as (b) of Fig. 1 are eliminated from 
the mixed terms since full lines and dashed lines must 
not be made to overlap (two sites cannot simultan­
eously be both first- and second-neighbor pairs). On 
the other hand, many essentially new diagrams occur 
because of the possibility of permuting full and dashed 
lines within a graph of a given geometrical type. As an 
example consider the square, (d) of Fig. 1 which arose 
from the trace, (P4Q2) of R-W. In the trace, (P2R2Q2), 
this geometric type is now represented by the two dif­
ferent squares, (f) and (h) of Fig. 1, after the rearrange­
ment of the full and dashed lines within the figure. As a 
result, a larger number of diagrams appear in a given 
order of mixed coefficients than are found in the equiva-
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..««»-3aF 
23 

p,(y;zz) 
zp,(y;zz) 

zp,(z) 
P2(y;zzz) 

a,3(z,y) * a3,(y,z) , 

X* 
16 

-120 
80 
48 

-120 
- 4 0 

| -80 

X 
36 

- 9 0 

78 
-60 
-20 
-40 

I 
24 

27 

2 (z fy) 405 

yz 
yz2 

P,(y;yz) 
P,(y;zz) 

yp.(y;zz) 
zp,(y;yz) 

P2(y;zyz) 
p2(y;zzy) 

FIG. 2. Tabular repre­
sentation of the coef­
ficients, #31, #i3, and #22-

160 
-240 
-240 
480 

48 
96 

-480 
h240 
-160 
-160 

320 
-180 
-180 

78 
156 

- 2 4 0 
-120 
- 8 0 
- 8 0 

180 

27 
54 

lent order for first neighbors alone. We have therefore 
restricted our present calculations to coefficients for 
which m+n^4:. 

The enumeration of the occurrences of diagrams on a 
lattice of N sites is straightforward and has been dis­
cussed in R-W and elsewhere.3,8 In counting the mixed 
diagrams, however, one has to exercise the additional 
precaution of distinquishing between diagrams which 
differ only in the arrangement of full and dashed lines 
within the figure. Rearrangements among the various 
lines can lead to distinct diagrams whose occurrence 
numbers on the lattice will be different. Thus, while (f) 
and (h) of Fig. 1 are both squares composed of two full 
and two dashed lines, the number of each on a lattice 
need not be the same. On a face-centered cubic lattice, 
for example, the number of occurrences of (f) is twice 
that of (h). 

The final step in the calculation is the evaluation of 
the traces of the products of spin variables correspond­
ing to the diagrams. At this stage the distinction be­
tween full and dashed lines disappears and the evalua­
tion of the traces proceeds exactly according to the 
scheme outlined in R-W. This circumstance obtains for 
two reasons. Primarily, both kinds of lines represent 
operators which have the same scalar product form, 
S^SA; (their identity as first- or second-neighbor inter­
actions is only required and completely accounted for 
in the first stages of the computation described above). 
Furthermore, the set of distinct terms which corre­
spond to a diagram is precisely the same whether deal­
ing with first neighbors alone or with mixed first- and 
second-neighbor interactions. This may be seen as fol­
lows: First, we observe that any particular diagram, 
even when its points are labeled (so that it corresponds 
to a particular set of lattice sites) still represents a 
number of products of spin matrixes which differ only 

in the sequence of their factors. Consider diagram (c) 
of Fig. 1 which derived from (P4Q2). Labeled clockwise 
starting with 1 at the top, this diagram represents the 
traces of all the terms which are the twelve ways of 
permuting the dot products within the operator (Si«S3)2 

X(SrS 2 ) (S 2 'S 3 ) S2zS3z. Now, diagram (g) of Fig. 1 
(when similarily labeled) represents precisely the same 
twelve traces. This diagram derives from ]£Perm. 
(P2R2Q2) within which we have already included the six 
different ways of arranging the sequence of P and R 
operators. Each one of these arrangements will then 
give rise to two distinct permutations with respect to 
the exchange of positions of the two factors (Si»S2) and 
(S2«S3). The twelve traces which result are just those 
required to give complete correspondence with those 
of diagram (c). The same considerations are found to 
apply to all the mixed diagrams encountered in the 
theory. The various traces for all the diagrams are then 
evaluated with the aid of a comprehensive list of basic 
traces given in Appendix 1 of R-W. 

The results obtained for the 
("nm are as follows: 

a11(z,y) = (8/9)yzX>, (18) 

» P. J. Wojtowicz, Mol. Phys. 6, 157 (1963). 

a2l(z,y) = (4/27);yX2{622X-4;4X+3] 

-Spi(y\zz)l2X+\1), (19) 

&i2(z,y) = a2i(y,z), (20) 

where X stands for 5 ( 5 + 1 ) . The coefficients a3X, &u, 
and a22 are given in tabular form in Fig. 2. The meaning 
of the tables is straightforward: The numerical coeffici­
ents within the table are multiplied by the power of X 
above and by the lattice parameters on the left. The sum 
of all these is then multiplied by the common factor 
preceding the dot. The numerical values of the lattice 
parameters for several structures are presented in Table 
I. The parameters pn(z) and pn(y) have been defined 
above. The other parameters are defined analogously: 
pn(a;l3y8' • •) is the number of n+2 sided polygons 
whose sides are composed of a, /?, y • • • neighbor pairs 
(in that order) that can be constructed on a specified 
fixed a neighbor pair within the lattice. The numbers of 
polygons of type (g), (f), and (h) of Fig. 1 that can be 
constructed with a specified second-neighbor pair as a 
base are thus pi(y;yz), pi(y)zyz), and p2(y\zzy), 
respectively. 

The corresponding bnm obtained from Eqs. (18) to 
(20), Fig. 2, and Eq. (13) are as follows: 

*n = 0, (21) 

j 2 1 = (4/9)yX^i(y; zz)[2X+ll, (22) 

612= (4/9)*X2^(s; yy)£2X+ll, (23) 

while the coefficients bn, bu, and #22 are given in tabular 
form in Fig. 3. Equation (17) has been used to obtain 
explicit expressions for bn and bn from the derived J2i 
and bz\. 
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IV. APPLICATION TO GADOLINIUM 

This section is concerned with the quality of informa­
tion which can be obtained from the application of the 
series expansions to experimental data. We desire to 
know if it will be possible to extract unambiguous values 
of the exchange parameters from susceptibility measure­
ments. Our choice of material for such a preliminary test 
of the theory is ferromagnetic gadolinium metal. This 
selection was made for several reasons: (i) the Heisen-
berg model with spin \ appears to be appropriate for 
gadolinium, (ii) very good experimental data was avail­
able, and (hi) certain interesting questions concerning 
the exchange interactions in gadolinium have recently 
been raised by Goodings.9 

The magnetization10 and susceptibility11 data and the 
spin resonance measurements12,13 support the view that 
the magnetism of gadolinium metal arises from the 
localized 4/7 electrons of the gadolinium core. Like 
Gd3+, the core state appears to be an 8S7/2 with a well-
defined spin of S—\. On this basis, Goodings9 has at­
tempted to explain the low-temperature magnetiza­
tion data under the assumption that the exchange inter­
actions are of the nearest-neighbor Heisenberg type. 
Using a highly detailed spin-wave analysis Goodings 
has succeeded in obtaining an excellent fit to the mag­
netization from absolute zero to about 0.8 Tc; the value 
of the nearest-neighbor exchange parameter required is 
Ji/k=2.1°K. Applying the Rushbrooke and Wood2 

formula for the Curie point (also derived from the 
nearest-neighbor Heisenberg model) to gadolinium, how­
ever, yielded a different value for the exchange: 
Ji/k = 2.9°K. Goodings has attributed this discrepancy 
to the neglect of the second- and higher order neighbor 
interactions in both theories. He has further concluded, 
on the basis of qualitative arguments, that interactions 
through at least fifth neighbors are significant in 
gadolinium, and that the interactions beyond first 
neighbors are on the average more antiferromagnetic 
than ferromagnetic. 

The high-temperature susceptibility data used in the 
present study was kindly supplied to us by Dr. Sigurds 
Arajs of the United States Steel Research Center. These 
data are qualitatively similar to that previously pub­
lished by Arajs and Colvin.11 The new measurements 
have been made on a more pure sample and the results 
are more precise with much less scatter. The anomaly 
at 750°K was also much smaller for this sample but was 
still sufficiently large to preclude the extension of our 
analysis above 750°K. The temperature range examined 
fell between 375 and 743°K; the Curie point is about 
293°K. 

The first step in the analysis was the estimation and 

9 D . A. Goodings, Phys. Rev. 127, 1532 (1962). 
10 J. F. Elliot, S. Legvold, and F. H. Spedding, Phys. Rev. 91, 

28 (1953). 
11 S. Arajs and R. V. Colvin, J. Appl. Phys. 32, 336 S (1961). 
12 A. F. Kip, Rev. Mod. Phys. 25, 229 (1953). 
13 J. Popplewell and R. S. Tebble, J. Appl. Phys. 34,1343 (1963). 
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subtraction of the temperature-independent suscepti­
bility which arises from the atomic core diamagnetism 
and the conduction electron paramagnetism. The linear 
extrapolation of the high-temperature data on a X 
versus (T— 6)~l plot (6 is an approximate extrapolated 
paramagnetic Curie point, here 300-310°K) gave a 
temperature-independent contribution of 4.1X 10~6 

cm3/g. This component amounts to 0.25% and 3.5% of 
thes pin susceptibility at 375 and 743°K, respectively. 

The remaining spin susceptibility was analyzed with 
the aid of Eq. (12). For the hexagonal close-packed 
lattice with S=% the numerical values of the co­
efficients used are 

610--126 620=1386 

^30=50 946 640= 2 456 280.75 

650= 137 048 223.45 660= 8 230 853 289 

601=—63 

6 0 3 = - 3 1 9 2 

6n=0 

612=0 

622=3165 277.5 

602=693 

6o4=275 580.375 

621=85 995 

6 3 i = 6 449 625 

6 1 3 = 0 . 

(24) 

The procedure adopted for the determination of the ex­
change constants is as follows: values of Ji and J2 were 
assumed and substituted into Eq. (12). The theory and 
the data were fitted by adjusting the Curie constant C 
so as to give the least root-mean-square deviation 
(rmsd). The resulting rmsd for each pair of exchange 
constants were plotted as a function of Jx and J2. The 
pair of interaction constants which give the best lit to 
the data are then determined by seeking the position of 
the absolute minimum in the surface, rmsd of J\ 
and J2. 

The anticipated sharp and well-defined minimum was 
not found, however. Instead, the surface, rmsd of Jx 

and J2 displayed an almost linear deep trough. Though 
quite deep and narrow, the trough, unfortunately, had 
only a very shallow minimum along its length. Thus, all 
pairs Jh J2 along the bottom of the trough give almost 
equally good fits to the data; rather than being able to 
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specify a unique set of exchange constants, all that is 
possible is the determination of one relation between Jx 

and J2. This relationship will be given by the equation 
of the projection of the trough bottom onto the Jh 

J2 plane. We believe that this will be a general feature 
to be encountered in all applications of the present 
theory to experimental susceptibilities.14 In order 
to obtain unambiguous values of the interaction param­
eters it appears necessary to analyze additional experi­
mental data. This can be the spin-wave analysis of low-
temperature properties, the series expansion analysis of 
the high-temperature heat capacity15 or the Green's 
function analysis of the Curie point16 (all based on 
1st and 2nd-neighbor interactions, of course). 

In the present example the equation of the projection 
of the trough bottom onto the Jh J2 plane is 

(JiA)+0.621(/2A)-0.030(/2A)2- 2.807, (25) 

-0 .50^ ( V * K 1.00, 3.12£(jyft)£2.22. (26) 

All pairs Jh J2 which satisfy Eqs. (25) and (26) give 
almost the same rmsd. At J2/k = —0.50, the rmsd is 
24.1 g/cm3, while at 72/&=1.00, the rmsd is 23.8 
g/cm3 (these correspond to average deviations of about 
\%). There is a shallow minimum along the trough at 
7i/A=2.73, J2/k=0.13 where the rmsd is 22.1 g/cm3; 
beyond the limits of Eq. (26) the rmsd rises rapidly and 
the trough disappears. 

For all values of J\ and J2 satisfying Eqs. (25) and 
(26) the least-squares determined Curie constant as­
sumed the same value. On a molar basis the value ob­
tained was 7.41 which corresponds to g= 1.94. This is in 
very close agreement with the g=1.96±0.03 obtained 
from paramagnetic resonance.13 

We have made a preliminary attempt at specifying 
the individual values of Ji and J2 in gadolinium by us­
ing the Tahir-Kheli and Jarrett16 Green's function 

14 We have in fact observed this behavior in the preliminary 
analysis of the susceptibilities of the europous chalcogenides. The 
same results are to be expected in other examples as well since all 
inverse susceptibility data are qualitatively quite similar in 
appearance. 

15 P. J. Wojtowicz, J. Appl. Phys. 35, 991 (1964). 
16 R. A. Tahir-Kheli and H. S. Jarrett, Bull. Am. Phys. Soc. 9, 

463 (1964). 

analysis of the Curie point. Though these results per­
tain explicitly to the face-centered cubic lattice (with 
S= J), they should be quite accurate for hexagonal 
close-packed gadolinium as well (compare the similarity 
in structure parameters for fee and hep in Table I and 
in R-W). Now, because this is a two-parameter theory 
describing one experimental point, it can provide but 
one relationship between Ji and J2. Substituting the 
measured value,10 2n

c=289°K, the following equation is 
obtained: 

7i/£+0.64/2/£ = 2.90. (27) 

Notice that Eqs. (25) and (27) are almost identical, 
giving very nearly the same line in that portion of the 
Ji, J2 plane in or near the limits of Eq. (26). 

Two interpretations of this occurrence are possible. 
First, one may assume that the information obtained 
from the two treatments is essentially the same, the 
small deviations between Eqs. (25) and (27) being 
attributed to the different mathematical approxima­
tions involved. The near coincidence of the two results 
may then be cited as evidence for the equivalence of 
these two widely differing forms of approximation to 
the statistical thermodynamics of the first- and second-
neighbor Heisenberg model. On the other hand, one 
could assume that the two theories provide essentially 
independent information. In that case, the intersection 
of the curves, Eqs. (25) and (27), could then be con­
sidered to give the best values of J i and J2. The inter­
section occurs at Ji/k=2.0, J2/k~lA; too much con­
fidence should not be placed on these values since the 
intersection of the two almost parallel curves is highly 
sensitive to small displacements in either or both of 
Eqs. (25) and (27). It is of interest to note, however, 
that the intersection quoted suggests a definitely posi­
tive value for J2 in contrast to the conclusion of 
Goodings.9 At the present time we believe that the first 
interpretation of these results is the more probable. 

ACKNOWLEDGMENT 

The authors wish to express their sincere apprecia­
tion to Dr. Sigurds Arajs of the United States Steel 
Research Center for kindly supplying the experi­
mental data on the susceptibility of gadolinium metal. 


